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Abstract

We study human learning in a individual choice laboratory task called Or-
ange Juice Futures price forecasting (OJF), in which subjects must implic-
itly learn the coe�cients of two independent variables in a stationary linear
stochastic process. The 99 subjects each forecast in 480 trials with feedback
after each trial. Learning is tracked for each subject by �tting the forecasts
to the independent variables in a rolling regression. Results include: (1)
learning is fairly consistent in that coe�cient estimates for most subjects
converge closely to the objective values, but there is a mild general tendency
toward over-response. (2) Typically learning is noticeable slower than the
Marcet-Sargent ideal. Among the more striking treatment e�ects are a gen-
eral tendency towards (3) over-response with high background noise and (4)
under-response with asymmetric coe�cients.



1 Introduction

Economists in recent years have begun to model how people might learn
equilibrium behavior. Microeconomists following Binmore (1987) and Fu-
denberg and Kreps (1988) consider learning models with roots in Cournot
(1838) and Brown (1951). Numerous laboratory studies test and re�ne the
microeconomists' learning models; see Camerer (1998) for a recent survey.
There is also a separate theoretical macroeconomics literature on learning
following Marcet and Sargent (1989a,b,c) and Sargent (1994); see Evans and
Honkapohja (1997) for a recent survey. Here the focus is on how people might
learn to forecast relevant prices, and whether the learning process permits
convergence to rational expectations equilibrium. We are not aware of any
laboratory work intended to test and re�ne the learning models favored by
macroeconomists.1

The work presented below examines human learning in an individual
choice laboratory task called Orange Juice Futures price forecasting (OJF).
The OJF task has a form and complexity similar to the forecasting tasks in
macroeconomists' models: subjects must implicitly learn the coe�cients of
two independent variables in a linear stochastic process. We study stationary
versions of the OJF task here in order to sharpen the evidence on learning
per se, and leave for future work the nonstationary (or "self-referential") as-
pect of the macroeconomists' models that prices are endogenous and perhaps
a�ected by individuals' learning processes.

The OJF task is based on the observation of Roll (1984) that the price
of Florida orange juice futures depends systematically on only two exoge-
nous variables, the local weather hazard and the competing supply from
Brazil. The laboratory experiment consists of many independent trials in
which human subjects forecast the OJF price after observing values of the
two variables. After each trial the subject receives feedback in the form of
the "actual" price generated from a linear stochastic model using the ob-
served values of the two variables. We report results for 99 subjects, each

1We hasten to add that several important laboratory investigations have been inspired
by other strands of macroeconomic theory. For example, Van Huyck et al (1997) and
related work studies equilibrium convergence in coordination games, and Marimon and
Sunder (1994) and related work studies sunspot equilibria in overlapping generations
economies. Later in this introduction we discuss three laboratory studies of rational ex-
pectations equilibrium.
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forecasting in 480 trials. Several treatments are varied across subjects, such
as the noise amplitude and the relative impact of the two variables.

We are interested in two aspects of learning: consistency and speed.
Roughly speaking, learning is consistent to the extent that subjects even-
tually respond correctly to the exogenous variables, and learning is speedy
to the extent that subjects settle quickly into a systematic pattern of response
to the variables. To measure learning speed and consistency, we introduce a
rolling regression (or sequential least squares) technique inspired by Marcet
and Sargent (1989a,b,c). The technique gives us trial-by-trial estimates of
subjects' implicit coe�cient values or responsiveness to the two exogenous
variables. We deem learning to be consistent if these estimates converge by
the last trial to the objective values, and say that there is under (or over)
response if the absolute values of the coe�cients are below (or above) the ob-
jective values. We measure learning speed mainly by comparing a subject's
path of coe�cient estimates to an ideal Bayesian (or Marcet-Sargent) path.

The OJF task is a continuous analogue of the discrete response Medical
Diagnosis (MD) task studied intensively by psychologists such as Gluck and
Bower (1988) and more recently by Kitzis et. al. (1998). The older psycho-
logical literature from Thorndike (1898) emphasizes reinforcement learning
{ actions that do well now are "reinforced" and chosen more frequently in
the future. Naive reinforcement models do not extend naturally to our OJF
task since it is not clear what reinforcement means in the context of con-
tinuous stimuli (weather and supply information) and continuous response
(price forecast). The MD literature considers more sophisticated models of
error-driven learning, including neural network or connectionist models and
generalized discrete Bayesian models. The most striking �nding of Kitzis
et. al. (1998) is that a generalized Bayesian model outperforms alternative
psychological models in the version of the MD task closest to the present
OJF task. That paper also justi�es reliance on least squares (as opposed
to maximum likelihood) �tting techniques. The MD results encourage us to
pursue rolling regression techniques in the OJF task.

There is also a related strand of experimental economics literature that
examines rational expectations. Garner (1982) presents twelve subjects over
44 periods with a continuous forecasting task that implicitly requires the es-
timation of seven coe�cients in a third order autoregressive linear stochastic
model. He rejects stronger versions of rational expectations but �nds some
predictive power in weaker versions. Williams (1987) �nds autocorrelated
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and adaptive forecast errors by traders in simple asset markets. Dwyer et
al (1993) test subjects' forecasts of an exogenous random walk. They �nd
excess forecast variance but no systematic positive or negative forecast bias.

Section 2 below describes our experiment. Section 3 presents the main
results: (1) learning is fairly consistent in that most subjects' coe�cient
estimates converge closely to the objective values but there is a mild general
tendency toward over-response. (2) Typically learning is noticably slower
than the Marcet-Sargent ideal. Among the more striking treatment e�ects
are a general tendency (3) towards over-response in the high noise treatment
and (4) towards under-response in the asymmetric impact treatment.

Section 4 summarizes the results and discusses implications and exten-
sions. Appendices A and B document the instructions to subjects and the
identi�cation of unresponsive subjects. Kelley and Friedman (1998) briey
summarize the recent MD results together with preliminary OJF results.
Kelley (1998) reports additional OJF results, as described in section 4 be-
low.

2 Laboratory Procedures

We induce the following linear stochastic relationship of price p to contem-
poraneous values of two exogenous variables, x1 and x2:

pt = a1x1t + a2x2t + et: (1)

Subjects are told that p refers to the local orange juice futures price relative to
its normal level. They are also told that x1 refers to the local weather hazard
which could potentially destroy part of the domestic orange production, and
that x2 refers to the competing supply of oranges from Brazil. The realized
price pt in trial t depends on the realized value of x1t 2 [0; 100] and its
coe�cient a1 (approximately 0.4 in the baseline treatment), and on x2t 2

[0; 100] and its coe�cient a2 (approximately -0.4 in the baseline treatment).
The coe�cient signs reect the economic reality that loss of domestic crops
tends to increase price and that increased foreign supply tends to decrease
price. The noise term e reects the unpredictability of prices in �eld markets.
Its value et is drawn independently each trial from the uniform distribution
on [�v; v], where the (maximum) noise amplitude v is a treatment variable
(approximately 8 in the baseline treatment).

3



Subjects are instructed on the general nature of the task but are not
speci�cally told the functional form or the coe�cient values. Subjects are
told that the experiment is a learning experience in which the goal is to
learn the relationship between information (weather and competing supply)
and the price of OJF. The instructions (attached as Appendix A) state in
nontechnical language that the relationship is stable but subject to random
events that are independent across trials. Treatments described in the next
subsection are held constant for each subject and are varied across subjects.

Subject Pool. We have tested 99 undergraduates from the University of
California at Santa Cruz, most of them from the pool of psychology students
who need to ful�l a class requirement. Salient cash payments were o�ered in
one treatment described below.

Apparatus. The experiment uses a graphics computer program written
in C++, run on power Macintosh 7500/100 computers with full color moni-
tors. Subjects in four sound dampened isolated testing rooms view controlled
events on the monitor screen and respond via clicking the mouse on various
icons on the display. See Figures 1.1-1.3 for examples of screen displays.
This setup was chosen to minimize boredom and to eliminate the possibility
of peer pressure.

Stimuli. The realized values for weather x1t and supply x2t are indepen-
dently drawn each period from the uniform distribution on [0; 100], so the
variables are orthogonal. The noise term is independently drawn each period
from a di�erent uniform distribution, U [�v; v]. The realized values then are
combined using equation (1) and chosen parameter values (a1; a2; and v) to
produce a 480 trial sequence of prices. The same sequence of realized values
and prices is used for all subjects in any given treatment condition.

Method. Each trial begins with the graphical presentation of the weather
and supply values using two thermometer icons (labeled weather hazard and
Brazilian supply) on the left side of the monitor display as in Figure 1.1
(A). Each thermometer is partially �lled in red to indicate the realized value.
Except in the no history treatment described below, the subject could also
access (by clicking Previous Cases icon labelled (C) in Figure 1.1) the history
of prices in previous trials with similar weather and supply levels, as in Figure
1.2 (D).2

2The history box (D) displays numerically the current realization of both variables, the
number of previous trials for each variable whose realization is within 10 of the current
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Subjects enter their forecast each period by moving slide (B) in Figure
1.1 up or down within the possible price range. After the price prediction
is entered and con�rmed, a blue line appears on the slide bar to indicate
the actual price in that trial as in Figure 1.3 (E). Except in the no score
treatment described below, the score box then appears as in Figure 1.3 (F).3

After viewing the score box (if present) the subject advances to the next trial
via a mouse click.

Each subject completes 480 self-paced trials. The session is broken into
3 blocks of 160 trials and subjects are permitted �ve minute breaks between
blocks. Subjects generally �nish in less than the allotted two hours.

2.1 Treatments.

Baseline. The baseline parameter values are a1 = 0:417, a2 = �0:417 and
v = 8:33. The history and score boxes appear as described above. Each trial
the score is calculated from the continuous price forecast c and the realized
price p using the quadratic scoring rule S(p; c) = A�B(p� c)2, with A = 80
and B = 280. Thus the maximum score (for a perfect forecast) is A = 80
points and the minimum is �B = �200 points. See Friedman and Massaro
(1998) for a recent discussion of this scoring rule. The box also displays the
"expert" score of a forecaster with nothing left to learn, i.e., the score earned
by forecasting a1x1t + a2x2t in trial t, using objective values of ai. Subjects,
of course, do not observe the expert forecast, just the expert score.

Paid. This treatment di�ers from baseline only in that subjects are paid
according to their �nal scores. Each subject receives a $5.00 show up fee
covering the �rst 30,000 points of �nal cumulative score. (Actual �nal scores
always exceeded 30,000 with the top scores over 37,000.) Subjects also receive
an additional dollar for each 700 points scored above 30,000. The median
payment was about $15.00 with top payments about $16.50. Subjects are
told the payment procedures on arrival.

No Score. This treatment di�ers from baseline only in that subjects do
not have access to the Results or Score box icon and box (F).

realization, and the average realized price in those previous trials. The box remains on
the screen until the subject clicks the OK icon.

3The score box (F) displays the subject's score on the current trial and the cumulative
score through the current trial. The calculation is explained in section 2.1 below.
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No History. This treatment di�ers from baseline only in that subjects do
not have access to the Previous Cases or History icon and box (C) and (D).

Asymmetric. Here the coe�cient values are a1 = 0:250 and a2 = �0:583.
Thus the weather and the competing supply information no longer have equal
(or symmetric) impact on OJF price.

High Noise. Here the noise amplitude is almost doubled, to v = 14:3, and
the coe�cient values ai are scaled to �0:357, as described below. All other
features are as in the baseline treatment.

2.2 Data Processing.

The baseline values of ai are scaled as follows. Begin with unscaled values
a�1 = 0:5 and a�2 = �0:5. Given noise amplitude v�, equation (1) implies that
the unscaled price ranges from p� = 0:5(0) � 0:5(100) � v� = �[50 + v�] to
p� = 0:5(100)� 0:5(0) + v� = [50 + v�]. To �t in the screen's range [�50; 50]
we display the scaled price p = 50p�

[50+v�]
. The scaled coe�cients therefore are

ai =
50a�

i

[50+v�]
and the scaled noise amplitude is v = 50v�

[50+v�]
. For the baseline

noise value v� = 10 we have v = 8:33 and ai = 0:833a�i = 0:417. The scaled
coe�cients used in the high noise (v� = 20) and asymmetric treatments are
derived in a similar fashion.

For a given subsequence of trials (pt; x1t; x2t), t = t0; :::; T , we de�ne
the ideal Bayesian (or Least Squares or Marcet-Sargent) learner by regress-
ing pt on the independent variables x1t and x2t via ordinary least squares
(OLS). The regression over this subsequence of trials yields coe�cient esti-
mates a1T and a2T . The subsequences we consider consist of trials 1 to 160,
2 to 161, ... ,320 to 480. Thus we obtain learning curves a1T and a2T for
T = 160; 161; :::; 480, which can be interpreted as ideal subjective estimates
of the objective values a1 and a2. We refer below to these as the M-S learning
curves.

We use similar rolling regressions for human subjects. An actual subject
may think of the task in various idiosyncratic ways | for example, he may
believe that prices are serially correlated or that price is a nonlinear deter-
ministic function of the exogenous variables, despite our instructions to the
contrary. Nevertheless, the analyst can summarize the subject's beliefs by
seeing how he responds to the current stimuli xit, and can summarize the
learning process by seeing how the subject's response changes with experi-
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ence. Our approach therefore is to reconstruct implicit beliefs using equation
(1) and subjects' actual responses.

The reconstruction proceeds as follows. Take the subject's actual forecast
ct in trial t as the dependent variable, and run rolling regressions as before
on the realized values xit, using a moving window of 160 consecutive trials
with the last trial T ranging from 160 to 480. Consistent and speedy learn-
ing is indicated by rapid convergence of the coe�cient estimates aiT (as T
increases) to the objective values ai. Obstacles to learning are suggested by
slow convergence, convergence to some other value which represents over- or
under-response, or divergence of the coe�cient estimates.

Some details may be worth noting briey. (1) In all the results reported
below, the intercept coe�cient a0 is constrained to its objective value of
zero. Excluding the intercept doesn't a�ect our main results but does it does
reduce clutter and improve statistical e�ciency. (2) In preliminary work we
considered stretchable windows of data running from t = 1 to T , to capture
fully the evidence available to the subject (or M-S ideal learner) in trial T .
However, the entire learning curve then reects the subject's initial response
pattern as well as the recent response pattern. We concluded that learning
curves would be more informative when estimated from a moving window
that includes only the most recent responses. Of course, the recent responses
already incorporate everything the subject has learned since the beginning
of the session. (3) Lengthening a (non-stretchable) moving window reduces
standard errors in the coe�cient estimates, but also reduces the weight on
the most recent responses. After a cursory investigation of preliminary data,
we settled on length 160 as a reasonable compromise.

3 Results

Figure 2 presents a sample of learning curves in each treatment. Each panel
of the Figure shows the objective coe�cient values as a horizontal dotted
line and shows the ideal M-S learning curves as thin continuous lines. The
rolling regressions that generate the M-S curves seem to capture the price
data quite well; typical R2s ranged from 0.91 for the �rst 160 trial window of
data to 0.93 for the last window. We were pleased to see that M-S learning
is consistent and quite rapid, indeed virtually complete within the �rst 160
trials, as indicated by closeness of the dotted and thin continuous lines in
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every panel. The gap between the lines typically is about one standard error
of the M-S coe�cient estimate.

The heavy continuous lines in each panel of Figure 2 represent the learning
curves for the highest scoring subject or the subject with the median score
in each treatment. The corresponding rolling regressions again had typical
R2s above 0.90. The �rst two panels show moderate but persistent over-
response to current weather and supply information, with implicit coe�cient
estimates lying closer to�0.45 than to �0.42 for both subjects in the baseline
treatment. The next two panels suggest that the top scoring paid subject
is right on target, but the median scorer tends to under-respond slightly.
Over-response seems strongest with the top scoring subject in the no history
treatment and the two subjects shown in the high noise treatment. The
two subjects shown in the asymmetric treatment appear to under-respond in
most trials.

To conserve space we do not show the learning curves for the other 87
subjects. Su�ce it to say that subjects sometimes over-respond, sometimes
under-respond, but typically are fairly close to the objective values. Subjects
seem to update more slowly than the M-S ideal learner. The rest of this
section will test these impressions more systematically.

3.1 Distribution of Scores

Figure 3 shows the distribution of the scores earned by subjects in each
treatment. Forecasts often are quite good; in most treatments the highest
score is close to 38,000, only a bit below the Marcet-Sargent ideal. The modal
score and the median score usually are not very far behind. Mean scores are
usually lower because the lowest scores are much lower, sometimes below
34,000. For comparison, we calculated scores in the baseline treatment for
two sorts of zero intelligence agents or non-learners. An agent who always
forecasted zero (the optimal uninformed forecast) would score 34,326 and an
agent who always used last period's price as the forecast would earn 30,647.

Closer examination of the raw data raises questions about the motivation
of the subjects with lowest scores. We found that these subjects generally
stopped responding to the weather and Brazil supply information at some
point during the session. Subjects who don't care about performance but
seek only to �nish quickly can do so by just clicking the "OK" icons in every
trial, leaving the price forecast at the default value c = 0. We identi�ed such
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behavior in 9 of the 99 subjects. Note that unthinking responses of c = 0
will bias the coe�cient estimates towards 0, so it is potentially important to
the data analysis to identify such "questionable" behavior. Appendix B lists
the questionable subjects and the criteria used to identify them.

Do the treatments systematically a�ect performance? Figure 3 suggests
that, compared to the baseline treatment, scores may be a bit higher for
paid subjects and a bit lower in some of the other treatments. Standard
Wilcoxon tests indicate signi�cantly lower scores in the asymmetric (p-value
= 0.002), and high noise (p=0.002) treatments, and no signi�cant di�erence
from baseline in the no score (p=0.71), and no history (p=0.56) treatments.
The paid condition produced insigni�cantly higher scores than the baseline
(p=0.15).

3.2 Distribution of Coe�cient Estimates.

Figure 4 shows the �nal (T = 480) distribution of both coe�cient estimates
by treatment. Overall, the subjects seem to have it about right: the estimates
center near the objective value and most of the estimates are not far away.
Moreover, most of the outlying estimates are spurious under-responses from
the 10 questionable subjects (denoted with asterisks (*)). The distributions
seem tighter in the paid treatment than in the baseline, and perhaps a bit
more dispersed in the last three treatments. More importantly, there may be
a slight bias towards over-response in the high noise treatment and towards
under-response in the asymmetric treatment.

Further analysis is required to explore these impressions. Table 1 classi�es
a �nal (T=480) coe�cient estimate as objectively correct if its central 95%
con�dence interval contains the corresponding �nal value from the Marcet-
Sargent simulation.4 The estimate is classi�ed as over- (or under-) response
if the con�dence interval lies entirely outside (or entirely within) the interval
from zero to the (M-S) objective value. Overall, a plurality of estimates (71 of
them) are classi�ed as objectively correct, and there are about equal numbers
of over-responses (59) and under-responses (48 plus 18 questionables).

4Note that this rede�nition of the objective value uses the available sample information
rather than unavailable population information to de�ne the objective value. The original
(population) de�nition di�ers by about .013, and would tend to shift the classi�cations
very slightly towards over-response.

9



The main imbalances arise in the last two treatments. Under-response
to the more important variable (labelled [Brazil] Supply in Figure 4) and
over-response to the other variable are quite prevalent in the asymmetric
treatment. In the high noise treatment, a majority of the non-questionable
estimates for both coe�cients are classi�ed as over-response and none is
classi�ed as under-response.

The last column of the Table reports Wilcoxon p-values separately for
each of the two coe�cients in each treatment for the full sample (and in
parentheses, for the reduced sample that excludes the 9 questionable sub-
jects.) In three cases the tests reject (at the conventional p=0.05 level in
the reduced sample) the null hypothesis that the estimates center at the
objective value, in favor of the following one-sided alternatives. There is sig-
ni�cant under-response to the Supply variable in the asymmetric treatment
(p=0.00), and signi�cant over-response to both variables in the high noise
treatment (p=0.02,0.00). There is also marginally signi�cant over-response
to the Supply variable in the baseline treatment (p=0.08). The other cases
of apparent under- and over-response do not produce signi�cant results in
this conservative test.

The impression of tighter distributions in the paid treatment is consistent
with signi�cant �ndings in other experiments (Smith and Walker, 1993) but
turns out not to be signi�cant in our data according to standard parametric
and non parametric tests. Of course, the sample size is not large, and it
may be worth noting that subjects with questionable motivation appeared in
the baseline (and high noise and asymmetric) treatment but not in the paid
treatment.

Table 1 also reports behavior observed halfway through the session, at
T=240. Recall from Figure 2 the impression (con�rmed in omitted �gures for
the other subjects) that modest but shrinking over-response is quite typical
at this point. The Table shows that over-response at the halfway point indeed
is somewhat more prevalent than at the end of the session, especially in the
paid and high noise treatments.

3.3 Summary

Several general conclusions emerge from the data analysis. Our human sub-
jects do not learn as fast as an ideal Bayesian (or Marcet-Sargent econo-
metrician), but even at the half-way point (T=240) of the experiment, the
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coe�cient estimates indicate that responses are not very far from the mark.
The overall tendency is towards over-response to the current information x1
and x2, but this tendency almost disappears by the end (T=480) of the exper-
iment. We conclude that learning in our experiment generally is reasonably
rapid and very consistent.

The treatments have modest but detectable impacts. Compared to the
baseline condition, fewer subjects in the paid treatment appear to have ques-
tionable motivation and the scores and coe�cient estimates seem to have
tighter distributions. Surprisingly, neither the no score treatment nor the
no history treatment signi�cantly impaired the the subjects' scores or ac-
curacy of the estimated coe�cients. The asymmetric treatment, however,
signi�cantly lowered scores and pushed subjects signi�cantly towards under-
response to the more important information and (insigni�cantly) towards
over-response to the less important information. The high noise treatment
had the strongest impact: lower scores and over-response to both information
variables.

4 Discussion and Future Work.

Existing literature can easily give the impression that humans typically make
very irrational choices in simple laboratory tasks; see Rabin (1998) for a re-
cent thoughtful survey. In sharp contrast, our human subjects rather quickly
learn highly rational behavior in a nontrivial forecasting task. What accounts
for the divergent results?

In some ways our experiment makes it di�cult for subjects to be ratio-
nal. The task is challenging in that the target variable, price, is stochastic
and contingent on two independent variables. Another challenging aspect
of our experiment is that we used psychology pool subjects, unpaid in most
treatments. Irrational behavior exhibited by such subjects in some tasks dis-
appears when subjects drawn from other pools are o�ered salient payments
(Friedman and Sunder, 1994). With the exception of 9 of 99 subjects whose
motivation was questionable, our subjects behaved quite rationally.

But in other ways our experiment gives rationality its best shot. The
basic task allows subjects to learn over a relatively long sequence of trials
(480) in a stationary environment. Our laboratory setup encourages subjects
to draw on relevant intuitions about price determination and avoids features
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that might suggest inappropriate heuristics. The visual interface encourages
rapid and unbiased processing of information and feedback. If anything, the
interface biases subjects towards under-response, since the default response
is 0 and the subject must move the slide up or down from that point. The
reduced sample used in some of the data analysis screened out the most
egregious cases of default response, but perhaps some slight bias remains5.
Arguably our setup is more representative of economically important �eld
environments than the some of the setups used in laboratory studies that
�nd irrational behavior.

The rational behavior is fairly robust. Performance was not signi�cantly
impaired in the no score and no history treatments, which eliminated useful
feedback. Even in the asymmetric and high noise treatments, performance
was still quite good. Kelley (1998) reports several additional robustness
checks. Speci�cations designed to capture prior beliefs and non-linear re-
sponses detected some transient e�ects in many subjects, but for the most
part these e�ects disappeared by the �nal trial. Tests allowing a non-zero in-
tercept term (a0) for the asymmetric weights treatment were also performed.
The main e�ect of this additional parameter was to eliminate the marginally
signi�cant overresponse observed for the smaller stimuli. The underresponse
observed for the larger stimuli remained signi�cant. Responses remained
fairly rational even in a treatment featuring a structural break.

An important extension of the work presented here, especially from the
macroeconomics point of view, is to introduce self-referential price determi-
nation. Marcet and Sargent (1989abc) study several linear stochastic mod-
els where traders' expectations a�ect the actual price observed each period.
They derive conditions on traders' learning processes (rolling regressions in
essence) that ensure convergence of actual price to rational expectations equi-
librium. It seems feasible to implement such economies in the laboratory
and (given some stronger assumptions than needed in the present paper)

5The most questionable remaining subject is 009 in the no history treatment. He made
very erratic choices until late in the session, spent no more time making choices than the
screened subjects (about half as long as most remaining subjects), and earned almost as
low a score as screened subjects. He was not screened out of the reduced sample because
he entered mainly non-default responses, but his motivation is also questionable and his
coe�cient estimates indicate dramatic under-response. Indeed, the relevant test would
indicate marginally signi�cant over-response (to the second variable in the no history
treatment, p=0.08) if this subject were screened out of the sample.
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to extract estimates of subjects' learning processes. We conjecture that the
empirical models introduced in the present paper will continue to do well in
a more complex self-referential setting.

We see two main lessons in the present results. The discussion so far
has emphasized the lesson that people can learn to make quite good fore-
casts. The other lesson is that some slight but systematic biases remain.
In particular, even after 480 trials, subjects still tended to over-respond to
news in the high noise environment. Slight individual biases might interact
to produce economically important market biases (Akerlof and Yellen, 1985;
Kelley, 1998). More theoretical and empirical work is needed to understand
learning in self-referential, nonstationary environments.
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Appendix A: Instructions to Subjects

ORANGE JUICE FUTURES EXPERIMENT
revised 5/98

GENERAL INFORMATION
In this experiment you will be asked to use information to make pre-

dictions. You will look at information on competing supply levels and on
weather hazard and will predict orange juice futures prices. Orange juice
price determination in this experiment is �ctitious but basically similar to
real life. Your job is similar to that of an investor who must use imperfect
information to predict futures prices.

In this experiment, new information arrives each period (or harvest sea-
son) on (1) the weather hazard for the local orange crop and (2) the supply
of oranges in the main competing region, Brazil (see label A at Figure 1.1).
Each piece of information can take on a value from 0 to 100. A value of 0
for weather hazard means that there will be no loss of local production due
to inclement weather and a value of 100 means likely massive damage to the
local crop. Similarly, a value of 0 for supply means a very small Brazilian
production and a value of 100 means the largest possible Brazilian crop.

Each period after viewing the information on weather and supply, you
will enter your price prediction. Prices are measured within the range -100
(all the way 'DOWN', or 100 cents below the normal level) to +100 (all the
way 'UP' or 100 cents above the normal level). For example, sliding the box
(see Figure 1.1, B) to the topmost 'UP' position indicates that you believe
that the current supply and weather conditions will result in a price 100
cents above the normal price. Likewise sliding the best guess box to the
bottommost 'DOWN' position indicates that you believe the current crop
conditions imply a price 100 cents below the normal price. Moving the box
halfway up(halfway down) between the middle and top(bottom) predicts a
price 50 cents price above(below) the normal level. Leaving the best guess
box at its original position predicts exactly the normal price level.
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READING CHARTS
Each period (or harvest season), you should �rst look at the information

chart. You may be able to get useful additional information by clicking on
the Previous Cases box. If it is present(see Figure 1.1, C) it will be under the
chart symbols. When you click that box, a window will appear in the lower
left corner of the screen (see Figure 1.2, D). The �rst column of the window
lists the current information on competing supply and/or weather hazard.
The second column lists the number of times so far in the experiment you
have seen similar supply and weather conditions, i.e., within plus or minus 10.
For example, in Figure 1.2 in all previous periods a weather hazard between
0 and 17 has occurred 1 time, and a supply between 59 and 79 has occurred
3 times. The third column gives the average price in these similar conditions.
For example (see Figure 1.2, D), the current harvest's low weather hazard of
(7) was associated with a price 35 cents below normal, and the somewhat high
competing supply (69) was associated with a price 18 cents below normal.
Click O.K. to leave the Previous Cases window.

After you have considered the relevant information, you enter your fore-
cast by clicking the slide box and moving it to your chosen location on the
ruler. After you have made your prediction the UP or DOWN box will be
darkened if you predict a price di�erent from the normal level, otherwise
they will both remain light. Click on OK to submit your forecast. You will
then be told the actual price that period. A blue bar will appear on the ruler
to indicate the actual price (see Figure 1.3, E). You may then be given a
numerical score for your prediction this harvest and a cumulative score for
all harvests to date (see Figure 1.3, F). You will then get the information
chart for the next period.

Your goal is to predict as accurately as possible each period. There will
be many periods for you to predict. Work at your own pace. The whole
experiment should take less than 2 hours. We ask that you do not take
notes.

SCORING
Your score is the pro�t an investor makes when acting on your price

prediction. Each harvest you earn points based on your prediction (between
-100 and 100) and the actual price that harvest. Pro�t is higher the more
accurate your forecast.(see Figure 1.3, F) For example if the actual price
turns out to be 70 cents above normal, then your score is highest if your
prediction was +70, a bit lower if your prediction was +60 or +80 and much
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lower if you predicted 0 or below.
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USEFUL FACTS ABOUT PRICES IN THIS EXPERIMENT
You should not expect your forecasts to be exactly correct each period.

The same supply and weather conditions can sometimes lead to a price in-
crease and sometimes to a price decrease relative to the normal level. But if
you properly use the average e�ects of weather and competing supply, your
forecasts will usually be fairly accurate.

Each harvest period researchers collect available information about mar-
ket conditions a�ecting orange juice. The information is distilled into the
charts you see. The charts always record the available information correctly.
The two pieces of information are independent in the sense that, for example,
a high local weather hazard does not indicate a high or low Brazilian supply.

Each piece of information tends to be associated with higher or lower
prices, but there is never certainty. An expert who completely understands
the e�ects of competing supply and weather hazards typically earns much
higher pro�ts than a novice, but even the expert can't predict perfectly each
period.

Feel free to ask the experimenter about anything in these instructions or
in the experiment that is unclear to you.
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Appendix B: Identity of Questionable Subjects.

The reduced sample omits 9 of the 99 subjects. The omitted 9 usually
earned the lowest scores in their particular treatment group. The criterion for
omission was whether the subject actually responded to the stimuli, or always
entered the default continuous response of 0 (corresponding to a normal price
forecast, or no expected price change) in many consecutive trials. Here are
the speci�cs.

Subject # Score Treatment Subject Characteristics
10 32638.82 Baseline Virtually all responses are default (ct = 0) for 50

to 200 consecutive trials. Second lowest score.
20 33753.02 High Noise Virtually all responses are default (ct = 0) for 50

to 200 consecutive trials. Lowest score in group.
29 33071.24 Asymmetric Virtually all responses are default (ct = 0) for 50

to 200 consecutive trials. Second lowest score.
30 36294.49 High Noise Completely stopped responding early in experiment

Sixth lowest score in group.
34 31426.81 Asymmetric Virtually all responses are default (ct = 0) for 50

to 200 consecutive trials. Lowest score.
40 35851.27 High Noise Virtually all responses are default (ct = 0) for 50

to 200 consecutive trials. Third lowest score.
61 35558.64 High Noise Completely stopped responding. Over-response that

moves to under-response. Second lowest score.
74 32271.7 Baseline Virtually all responses are default (ct = 0) for 50

to 200 consecutive trials. Lowest score.
89 35965.6 High Noise Virtually all responses are default (ct = 0) for 50

to 200 consecutive trials. Fourth lowest score.
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Figure 2: Learning Curves

2.1.1 Top Scorer in Baseline treatment 2.1.2 Median Scorer in Baseline treatment

2.2.1 Top Scorer in Paid treatment 2.2.2 Median Scorer in Paid treatment

2.3.1 Top Scorer in No Score treatment 2.3.2 Median Scorer in No Score treatment

Note: The heavy lines graph estimates of the subject's implied coefficients a1T and a2T; the width is approximately + - 1
standard error. The light lines graph the Marcet-Sargent (MS) ideal coefficients, and the dotted lines indicate the objective
values a1 and a2.
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2.4.1 Top Scorer in No History treatment 2.4.2 Median Scorer in No History treatment

2.5.1 Top Scorer in Asymmetric treatment 2.5.2 Median Scorer in Asymmetric treatment

2.6.1 Top Scorer in High Noise treatment 2.6.2 Median Scorer in High Noise treatment

Note: The heavy lines graph estimates of the subject's implied coefficients a1T and a2T; the width is approximately + - 1
standard error. The light lines graph the Marcet-Sargent (MS) ideal coefficients, and the dotted lines indicate the objective
values a1 and a2.
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Figure 3: Distribution of Subjects' Scores
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F.          High Noise treatment
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C.          No Score treatment
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B.          Paid treatment
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D.          No History treatment
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Figure 4: Distribution of coefficient estimates at T = 480

Note: The number of subjects are shown whose estimated coefficents aiT fall into the indicated ranges at T=480. "Obj" denotes
the range in which the objective value ai falls, for i=1 (weather hazard) and i=2 (competing supply). Estimates smaller in
absolute value are labelled "under-response" and larger estimates are labelled "over-response".
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B1.       Weather, Paid treatment
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B2.       Supply, Paid treatment
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C1.       Weather, No Score treatment
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C2.       Supply, No Score treatment
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Note: The number of subjects are shown whose estimated coefficents aiT fall into the indicated ranges at T=480. "Obj" denotes
the range in which the objective value ai falls, for i=1 (weather hazard) and i=2 (competing supply). Estimates smaller in
absolute value are labelled "under-response" and larger estimates are labelled "over-response".

D1.       Weather, No History treatment
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D2.       Supply, No History treatment
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E1.      Weather, Asymmetric treatment
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E2.      Supply, Asymmetric treatment
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F1.       Weather, High Noise treatment
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F2.       Supply, High Noise treatment
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