
2. Technology and Cost

Based on Varian, Chapters 1, 4-6

I. Describing the Firm

A. The neoclassical specification of the firm is really just a description of the firm’s

production possibilities.

1. Which outputs can be obtained from given inputs

2. How much has to be spent to get those inputs

3. How these production possibilities generate cost curves for the firm.

4. These cost curves themselves completely describe everything we need to know

about the firm, if we are neoclassical.

5. Obviously incomplete, but very useful...even to evolutionary biologists!

B. Input/Output

1. The firm produces a vector y of product quantities.

a. We’ll usually focus on a firm with a single product with quantity y.

2. The firm has a set of inputs it can use to create these products. We describe

these inputs as a vector (or a bundle) x = (x1, x2, ..., xn). Each xi is the

quantity of input i used for producing the output.

C. Technology

1. How much output y can the firm produce with input bundle x?

2. The firm’s technology specifies this:

3. The input requirement set V(y) consists of all of the bundles x that can

produce output quantity y.

Ex: Activity analysis and production plans.

Basically, recipes. For 10 liters of spaghetti sauce, for a dozen 64Gb memory

chips, for 100 rides to SFO, ...
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4. The production function y = f(x) describes the maximum output that

can be produced with any input bundle.

5. By the same token, f indicates vectors x of minimal inputs required to pro-

duce a given level of output y.

Ex: Cobb-Douglas technology, y = aox
a1
1 x

a2
2 · · · xann .

Ex: Leontief technology , y = min{a1x1, a2x2, ..., anxn}.

6. The isoquant for given output level y∗ is the set of input bundles that can

produce y∗ and no more than that. It is the lower boundary of V (y∗), and is

also a level curve (or surface...) f−1(y∗) of the production function f .

D. Standard assumptions about technology

1. Monotone

a. More input enables at least as much output.

b. Say this using V ’s: if you can produce y with x you can still produce y

with a bigger bundle x′ ≥ x.

(The notation means x′i ≥ xi for each i = 1, ..., n.)

Formally, x′ ≥ x and x ∈ V (y) =⇒ x′ ∈ V (y).

c. This is innocuous if extra inputs can be thrown away, “free disposal.”

2. Convex

a. If plans x and x′ are in V (y) (i.e. can produce y), then so is the mixture

αx + (1− α)x′, for any mixing proportion 0 < α < 1.

b. If a production plan can be replicated, then it is reasonable to say that

the technology is convex.

Ex: Replicating two production plans to create convex hull V (y).

3. Non-empty

a. With enough of the right kinds of inputs, you can create any level of

output y.
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4. Closed: a boring technical condition.

E. Trade Offs in Production Plans

1. Assume we have a ”smooth” production technology y = f(x1, ..., xn).

2. At what rate can we substitute one of our inputs for another in producing a

given amount of output, y?

a. Called the technical rate of substitution.

b. With a smooth technology with two inputs, it is just the slope of the

isoquant.

Ex: Using the production function (and taking total derivative), write the

technical rate of substitution in terms of marginal products (mpi = ∂f
∂xi

):

TRSij =
dxj
dxi
|[f(·)=y∗] = − ∂f

∂xi
/
∂f

∂xj
= −mpi

mpj
(1)

Ex: A Cobb-Douglas example.

3. Elasticity of substitution σ is elasticity of [xj/xi] wrt |TRS|. It is a mea-

sure of isoquant curvature. See Varian for ugly details (optional).

F. Returns to Scale tell us what happens when we try to scale up a production

plan.

1. If we scale up the input vector x by factor t > 0, what happens to y?

2. Three cases:

a. Constant returns to scale.

• If y = f(x1, x2), then f(tx1, tx2) = ty for all t > 0.

• Output is proportional to the inputs.

b. Increasing returns to scale.

• If y = f(x1, x2), then f(tx1, tx2) > ty for t > 1.

• We get more bang for our buck (assuming fixed input prices if you take

“buck” literally) when we scale up the production level.
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• Many hi-tech goods are like this, e.g., Airbnb listings.

c. Decreasing returns to scale.

• If y = f(x1, x2), then f(tx1, tx2) < ty for t > 1.

• We get diminishing returns from scaling our plans up.

• A major reason for DRS: there is some fixed input (not in the list),

such as CEO attention, or planetary resources, or ...

Ex: Cobb-Douglas and returns to scale.

3. Homogeneous functions: f(tx) = tdf(x) for some d, the degree. A homoge-

neous degree 1 production function is CRS. We’ll later see degree d = 0, 1, ....

II. Cost Minimization

A. Behavior of the firm

1. We assume that firms economize in production:

2. they choose input bundles that minimize the cost of producing their chosen

level of output.

3. When is this reasonable to assume? For competitive firms, and even for

unrestrained monopolists. Only two exceptions come to mind:

a. rogue managers pursue self-interest at the expense of firm owners, e.g.,

buy unnecessary corporate jets;

b. old-fashioned regulators set price of a monopoly firm based on actual

costs. Then it might be in the firm’s interest to inflate costs.

B. The firm’s problem.

1. To derive cost function, take as given the desired output quantity y, and the

input price vector w = (w1, w2, ..., wn). Sometimes also called factor prices.

2. Firms choose an input bundle x.
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a. For convenience we will often write x = (x1, x2) and w = (w1, w2), but

the reasoning extends to any finite vector of inputs.

3. The firm’s main constraint (aside from factor prices) is technological.

a. Can be summarized with the production function: y = f(x1, x2).

4. So the firm’s problem is simply:

c(w, y) = min
x1,x2≥0

w1x1 + w2x2 s.t. f(x1, x2) = y (2)

5. The four conditions noted earlier, including a strict version of convexity, allow

us to say that if the problem above has an interior solution x∗, then it is unique

and is characterized by the first order conditions, wi = λmpi, i = 1, ..., n.

6. Taking ratios of these first order conditions show that the technical rate of

substitution is equal to the ratio of the factor prices: |TRSij(x∗)| = wi
wj

.

7. The intuition is appealing: at the optimum input vector x∗, the isocost curve

has the same slope (i.e., market tradeoff rate given by the price ratio) as the

isoquant (the production tradeoff rate, TRS).

8. Even better, the Lagrange multiplier λ is equal to marginal cost! This can

be seen from the general interpretation the shadow price, here of output in

terms of expenditure on inputs. It can also be seen by solving any of the

FOCs for λ, since wi/mpi is the cost of increasing output by a (micro) unit

via increasing the input i. The insight (to be elaborated later) is that that

cost must be the same for all inputs used in positive quantities.

C. Conditional factor demand

1. The firm’s cost minimizing problem yields the firm’s demand for each input

as a function of prices and the scale of output.

2. Conditional factor demand for input i is x∗i (w1, w2, y).

D. The cost function
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1. Cost functions represent the lowest cost of production available to a firm at

a given set of factor prices. So we can rewrite equation (2) as

c(w, y) = w · x∗(w, y) (3)

2. With only two factors: c(w, y) = w1x
∗
1(w1, w2, y) + w2x

∗
2(w1, w2, y)

Ex: Constant Elasticity technology.

Special cases: Cobb-Douglas technology, Leontief technology, Linear technology

E. Relationship between cost and conditional factor demand

1. If the cost function is differentiable, then you can use it to recover the input

(or factor) demand functions.

2. This is known as Shephard’s lemma: x∗i (w, y) = ∂c(w,y))
∂wi

.

3. To verify, differentiate equation (3) wrt wi. The main effect is as in Shepard’s

lemma, but there is also an indirect effect w · ∂x
∗
i (w,y))

∂wi
. By the FOC, this

indirect effect is proportional to (mp1, ...mpn) · ∂x
∗
i (w,y))

∂wi
= 0, as can be seen

by differentiating the isoquant identity f(x∗(w, y)) = y.

4. This vanishing indirect effect is an example of the envelope theorem. Geo-

metrically, the idea is that the production function gradient (i.e., marginal

product vector) is normal to (aka orthogonal or perpendicular to) the isoquant

surface, and therefore also normal to the isocost surface, so the indirect effect

is zero. See Varian p. 74 for further discussion.

Remark: Varian p. 73 explains that “concave in w” as below means that the cost

function lies below the “passive” cost function in which inputs are fixed, which

(by construction) is linear in w.

F. Duality and properties of cost functions

1. Suppose that you have a function c(w, y) with the following 4 properties

6



a. monotone increasing in each argument,

b. homogeneous degree 1 in w,

c. concave in w, and

d. continuous and (at least piecewise) differentiable

Then there is some nice [monotone, ..., closed] production function for which

c is the cost function!

Conversely, if c is the cost function for some nice production function, then

it satisfies the four properties just mentioned.

2. Implications for applied work:

(a) usually you can skip estimating a production function, especially if not

all data on input quantities are available, and just estimate the cost function

directly, using data on input prices and output levels, which usually is easier

to collect.

(b) when estimating a cost function, consider imposing homogeneity and

monotonicity as coefficient restrictions, and testing for concavity.

Ex: CES cost function — see Appendix.

Ex: Translog cost function

ln c/y = a0 + a1 lnw1 + a2 lnw2 +
1

2
b11[lnw1]2 + b12 lnw1 lnw2 +

1

2
b22[lnw2]2 , (4)

where homogeneity of degree 1 implies (a) a1 +a2 = 1 and (b) b11 + b22 +2b12 = 0.

See Varian pp. 210 for factor share calculations.

III. Cost Curves with a single variable input

A. Cost curves

1. Focusing from here on cost instead of production, let’s consider short vs long

run.
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2. The main ideas come through most clearly when we assume just two inputs

to production which we will rename f (for fixed in SR) and v (for freely

variable).

a. x = (xf , xv)

b. w = (wf , wv)

B. The short run cost curve

1. In the short run, some of the costs are fixed.

a. In the short run we can’t buy new machinery, build new factories, hire

new management, or change union contracts.

b. Those costs are fixed – we represent them as F.

c. Part of F can be recovered if we halt production (e.g.s). This part is

called avoidable. the remainder is called sunk.

d. Buried here is a general point: economic costs = opportunity costs, not

necessarily cash or accrual costs. Ask yourself: does F change in the SR

when wf increases?

2. Total costs incurred by the firm consist of both variable costs and fixed costs

(which are in turn simple to express in the two inputs model).

a. Variable Cost: cv

• cv(y) = wvxv(wv, y, xf )

Ex: Variable Cost Curve

b. Fixed Cost: F

• F = wfxf

Ex: Fixed cost curve

c. Total Cost: cv(y) + F

• c(y) = wvxv(w, y, xf ) + wfxf
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Ex: Total cost curve

3. Average Costs

a. There are three main types of average costs that are used in studying firm

behavior.

• Average Total Cost: AC(y) = c(y)
y

= cv(y)+F
y

– U-shaped

• Average Variable Cost: AV C(y) = cv(y)
y

– Eventually rising

• Average Fixed Cost

– Always falling

b. The three average cost functions are related by a simple equation:

c. AC(y) = AFC(y) + AV C(y)

Ex: Average cost curves.

4. Marginal Costs

a. MC(y) = ∂c
∂y

= ∂cv
∂y

b. Relationship between MC and AC.

• When AC is decreasing, MC must be smaller than AC.

• When AC is increasing, MC must be larger than AC.

• MC intersects AC at the minimum point of the AC.

– Minimum efficient scale

• The same must be true with AVC!

• Integral of (area under) MC gives VC.

Ex: Suppose TC is c(y,w) = 128 + 69y − 14y2 + y3 for some fixed input price

vector w. Find FC, MC, VC, AVC, etc. Where appropriate, assume all fixed

costs are sunk.
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To look ahead a bit, find the short run supply curve by solving p = MC+(y) for

y. That is, obtain y∗(p,w) from the increasing portion MC+ of the marginal cost

curve. (Later we will see that not all of MC+ is relevant, just the part above the

AVC curve.)

C. Long run cost curve

1. In the long run, every input (aka factor) can be varied.

2. To see the relationship between long and short term curves:

• Pick some specific output level ȳ and let x̄f be the optimal amount of the

fixed factor for producing output quantity ȳ.

• Now totally differentiate c(ȳ, xf (ȳ)) with respect to y at ȳ:

dc(ȳ, xf (ȳ))

dy
=
∂c(ȳ, x̄f )

∂y
+
∂c(ȳ, x̄f )

∂xf

∂xf (ȳ)

∂y
(5)

• Since x̄f is the cost minimizing factor choice for producing ȳ, it satisfies

the first-order condition
∂c(ȳ,x̄f )

∂xf
= 0.

• Thus the last term in equation (5) is zero — this is another instance of

the envelope theorem — so we get a tidy expression for the relationship

between long run cost and short run cost:

dc(ȳ, xf (ȳ))

dy
=
∂c(ȳ, x̄f )

∂y
. (6)

• That is the slope of long run cost (the RHS of the equation) equals the

slope of short run cost (the LHS) where they intersect. That is, the SR

and LR curves are tangent when the fixed factor happens to be set at the

right level for the given output.

• Putting it together, we see that the LR cost curve is the lower envelope

of all of the SR cost curves as we vary the amount of the “fixed” input.

D. Learning curve
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1. Experience may enable a firm to discover better procedures and techniques,

avoid waste, etc.

2. First quantified in WWII aircraft and shipbuilding. Also true for teaching

classes, manufacturing memory chips, etc etc.

3. The usual specification is in accumulated output Yt =
∑

s≤t ys that AC falls

proportionately,

lnACt = AC0 − b lnYt. (7)

E. Multiproduct firms.

1. Varian describes by Technology Set. Often more useful is a Production Pos-

sibility Frontier.

Ex: PPFs for 2 outputs and a fixed input vector.

2. We’ll focus on cost functions for the usual reason. Suppose that the joint cost

function (estimated directly) is c(y1, y2;w).

3. Economies of scope exist if

c(y1, y2;w) < c(y1, 0;w) + c(0, y2;w).

4. This can happen if there are fixed costs that can be shared, e.g., distribution

networks, or R&D, or production facilities.

5. Another reason is the presence of cost complementarities,

∂2c
∂y1∂y2

< 0,

i.e., increasing the output of one product lowers the MC of the other output.

6. E.g., Big Creek Lumber product 1=redwood siding, product 2 = redwood

sawdust.
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IV. Appendix: The CES cost function

Consider the cost function

c(y, w1, w2) = [(
w1

a1

)r + (
w2

a2

)r]
1
r y, (8)

where y is the input quantity and the wi’s are the input prices. The scaling parameters

a1, a2 > 0 are to be estimated from the data, as well as the more interesting exponent

parameter r ∈ (−∞, 1].

To visualize any cost function, find the minimum cost C > 0 required to produce a

chosen output level (say y = 1) at some vector of prices (ŵ1, ŵ2). The iso-cost curve

through (ŵ1, ŵ2) consists of all combinations of input prices that allow production of

that level of output at the same cost C.

Returning to the CES cost function, we can use iso-cost curves to see that special cases

include some standard cost functions, as well as intermediate cases.

• One special case is r = 1. This gives linear iso-cost curves; the inputs are perfect

substitutes.

• Another is r = 0. Use L’Hospital’s rule etc to see that this gives Cobb-Douglas

iso-cost curves.

• For 0 < r < 1, the iso-cost curves intersect the axes; the inputs are imperfect

substitutes but neither is essential.

• For −∞ < r < 0, the iso-cost curves don’t intersect the axes; both inputs are

essential.

• As r → −∞, we get Leontieff iso-cost curves; inputs needed in fixed proportions.

The corresponding production function is

f(x1, x2) = [(a1x1)ρ + (a2x2)ρ]
1
ρ
, (9)

where r and ρ are “dual”: 1
r

+ 1
ρ

= 1. See Varian p. 55-56. In particular,
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• r = 1 ⇐⇒ ρ = −∞,

• r ↓ 0 ⇐⇒ ρ ↑ 0

• r = −∞ ⇐⇒ ρ = 1

so [linear, C-D, Leontieff] cost corresponds to [Leontieff, C-D, linear] production!

CES stands for constant elasticity of substitution. That elasticity, denoted σ, is a

measure of iso-cost curvature; see Varian p. 20. It connects to the CES production

function exponent ρ and the CES cost function exponent r via

σ = 1− ρ =
1

1− r
. (10)

To estimate σ directly, look at the first order conditions for cost minimization and do

some algebraic manipulations to obtain

ln
x1

x2

= a0 + σ ln
w1

w2

, where a0 = −σ
ρ

ln
a2

a1

. (11)

The discussion so far assumes constant returns to scale. More generally, replace the

outer exponent 1
ρ

in equation (9) by α
ρ
. Of course, α > 1 (or < 1) specifies increasing

(or decreasing) returns to scale.

Extra credit for the mathematically ambitious: find the cost function and estimating

functions corresponding to α 6= 1.
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