Equations for Competitive Markets

Linear Demand: \(q_d = a - bp \)
Linear Supply: \(q_s = x + yp \)

Log-linear demand: \(\ln(q_d) = \ln(a) + \varepsilon_d \ln p \)
Log-Linear Supply: \(\ln(q_s) = \ln(x) + \varepsilon_s \ln p \)

Total Surplus= Consumer Surplus + Producer Surplus;
Revenue= Producer Surplus + Variable Cost

Total Cost= Fixed Cost + Variable Cost;
Profit= Revenue - Total Cost = Producer Surplus - Fixed Cost

Quantity Tax (tax per unit): \(p_d = p_x + t \);
Value Tax (tax on percentage spent): \(p_d = (1 + t)p_x \)

Price Elasticity of Demand: \(\varepsilon_d = \frac{\partial \ln(D)}{\partial \ln(p)} = \frac{\partial D}{\partial p} D \);
If \(|\varepsilon| > 1 \) then curve is elastic.

Tax Incidence Formula: \(p_s(t) = p^* - \frac{\varepsilon D'}{S_D' + D'} \);
\(p_d = p^* + \frac{\varepsilon S'}{S_D' + D'} \);
If \(\varepsilon_d \) is constant: \(\frac{\partial p_d}{\partial t} = \frac{\varepsilon_s}{\varepsilon_s + \varepsilon_d} \)

Equations for Consumer Choice and Demand

Marginal Utility: \(MU_i = \frac{\partial u}{\partial x_i} \);
Marginal Rate of Substitution: \(MRS_{ij} = \frac{MU_i}{MU_j} \) and at interior optimum is \(\frac{p_i}{p_j} \)

Perfect Substitutes: \(u(x_1, x_2) = x_1 + cx_2 \);
Cobb-Douglas: \(u(x_1, x_2) = \ln(x_1) + c \ln(x_2) \)

CES Utility: \(u(x_1, x_2) = \frac{1}{\rho} \ln(x_1^\rho + x_2^\rho); \rho \in (-\infty, 1] \);
Quasilinear: \(u(x_0, x_1) = x_0 + g(x_1) \)

Marshallian Demand: \(x^* = (x^*_i(p, m), x^*_2(p, m), \ldots) \) is the solution to \(\max_{x \geq 0} u(x) \) s.t. \(m = p \cdot x \).
The Lagrangian is \(L = u(x) + \lambda (m - p \cdot x) \).
The FOCs can be written \(MU_i = \lambda p_i \) or \(MRS_{ij} = \frac{p_i}{p_j} \).

The solutions \(x^*_i(p, m) \) are homogeneous degree 0.

Hicksian Demand: \(h^*_i(p, u_0) : \min p \cdot x \) s.t. \(u(x) \geq u_0 \)

Roy’s Identity: \(x^*_i(p, m) = \frac{\varepsilon_m \partial u}{\partial p_i} \).

Slutsky Equation:
\[\frac{\partial x_i(p, m)}{\partial p_i} = \frac{\partial h_i(p, m)}{\partial p_i} - \frac{\partial x^*_i(p, m)}{\partial p_i} \]
(Elasticity Form) \(\varepsilon_i = \varepsilon^H_i - \varepsilon_m \) for \(s_i = \frac{p_i x_i}{m} \)

Demand Elasticity identity for product i: \(\varepsilon_{in} + \varepsilon_{ii} + \sum_{j \neq i} \varepsilon_{ij} = 0 \)

Equations for Cost and Technology

Technical Rate of Substitution: \(TRS_{ij} = -\frac{\partial f(x)}{\partial x_j} \bigg|_{x = 0} = \frac{m_j}{m_i} < 0; \)
MC: \(MC(y) = \frac{\partial c}{\partial y} = \frac{\partial c}{\partial y} \) and \(\int MC = VC \).

Factor Prices: \(w = (w_1, w_2, \ldots, w_n) \);
Production Function: \(y = f(x_1, x_2) \)

Cost Function with two factors: \(c(w, y) = w_1 x_1^1(w_1, w_2, y) + w_2 x_2^2(w_1, w_2, y) = \min_{x_1, x_2 \geq 0} w_1 x_1 + w_2 x_2 \) s.t. \(y = f(x_1, x_2) \)

Shepard’s Lemma conditional factor demand: \(x^*_i(w, y) = \frac{\partial c(w, y)}{\partial w_i} \)

Learning Curve: The typical specification is for \(Y_t = \sum_{t \leq T} \alpha_t \), AC falls proportionally, \(\ln AC_t = AC_0 - b \ln Y_t \)

Equations for Competitive Firms

SR Profit Maximization: \(\max_{y, x \geq 0} \pi = \max_{y \geq 0} \max_{x \geq 0} R(y) - w_i x_i - w_f x_f \) s.t. \(y = f(x, \bar{x}) \) \[\max[\pi] \] \(R(y) = \pi - c(y) \)

Revenue if firm is competitive: \(R(y) = py = pf(x, \bar{x}) \)
FOC of unconditional factor demand: \(p \frac{\partial f(x, \bar{x})}{\partial p} = w_v \)

Hotelling’s Lemma, Supply: \(y^*(p, w) = \frac{\partial c(p, w)}{\partial p} \);
unconditional factor demands: \(x_i(p, w) = -\frac{\partial c(p, w)}{\partial w_i} \)

Shutdown Condition (Competitive Firms): \(-F > py - c_v(y) - F \Rightarrow AVC = c_v(y) > p \)

Equations for Risky Choice

Given a lottery with monetary outcomes \(m_1, \ldots, m_n \) and corresponding probabilities \(p_1, \ldots, p_n \), its **expected value** is \(Em = \sum p_i m_i \) and its **variance** is \(Var m = \sigma^2 m = E(m - Em)^2 = \sum p_i (m_i - Em)^2 \).

Given Bernoulli function \(u(m) \) — so \(u' > 0 \) and, if the person is risk-averse, \(u'' < 0 \) —
the **certainty equivalent** \(m_{CE} \) of the lottery solves \(u(m_{CE}) = Eu(m) = \sum p_i u(m_i) \).

The **coefficient of absolute risk aversion** is \(a(m) = -u''(m)/u'(m) \) and the **coefficient of relative risk aversion** is \(v(m) = ma(m) \).

The **risk premium** is \(RP = Em - m_{CE} \). It is also given by the second term of the Taylor expansion of \(u \) around \(Em \).
Bayes Theorem: \(p(s|m) = \frac{p(m)s}{\sum_{t \in S} p(m|t)p(t)} \) or \(\frac{p(m)s}{p(t|m)} = \left[\frac{p(m)s}{p(m)} \right] \left[\frac{p(t)}{p(t|m)} \right] \) or \(\ln \) \text{prior odds} = \(\ln \) \text{likelihood ratio} + \(\ln \) \text{prior odds}. Note: \(s = \text{state}, m = \text{message} \).

Variance of Portfolio: Two assets: \(Var(p) = x_1^2 \text{var}(k) + 2x_1x_2 \text{Cov}(k, h) + x_2^2 \text{var}(h) \). Multiple assets: \(Var(p) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_ix_j\sigma_i\sigma_j \).

Equations for Monopolies

FOC for a monopolist: \(p(y) + p'(y)y = c'(y) \) which can be rewritten as \(p = \frac{1}{1+\frac{e}{x}} \text{MC} \); valid if \(\varepsilon < -1 \).

Passing Along Costs: \(\frac{\partial p}{\partial e} = \frac{1}{x+yp'(y)p'(y)} \).

Price Discrimination. Third Degree: \(\max p_1(x_1)x_1 - cx_1 + p_2(x_2)x_2 - cx_2 \). FOC gives: \(p_i(x_i) = \frac{1}{|x_i|} = c \) where \(\epsilon_i \) is the elasticity of demand in market \(i = 1, 2 \). The price-cost ratio gives the Markup factor: \(M_i = \frac{1}{1-\frac{\epsilon_i}{|x_i|}} \).

Cournot. Given inverse demand \(p(Y) = a - bY \), where \(Y = y_i + Y_- = \sum_{j=1}^{n} y_j \).

\(BR_i(Y_-) = \text{argmax } \pi_i = p(Y)y_i - c(y_i) \implies p(Y) + p'(Y)y_i - MC_i(y_i) = 0 \).

Nash equilibrium is where BR functions intersect: \(\Rightarrow \text{NE}_{\text{Cournot}} : y^* = \frac{N}{(N+1)b} (a - c) \implies y_i^* = \frac{a - c}{(N+1)b} \).

Bertrand. For firms with homogeneous goods, \(p = MC \) if equal MC, and \(p = \text{second lowest MC} \) if firms differ.

Stackelberg. Leader solves \(\max \pi_L(y_L, BR_F(y_L)) = p(y_L + BR_F(y_L))y_L - c(y_L) \).

Kinked Curves. Market demand: \(\text{MR} = \frac{dy}{dx} \) where \(\bar{p} \) is the established price. Rivals will match \(p < \bar{p} \) and will not match \(p > \bar{p} \). Profit maximization \(\Rightarrow \) not changing quantity (or price) as long as \(MC_{low} < MC < MC_{high} \) where \(MC_{low} = \text{MR}_{\text{match}}(\bar{p}) \), and \(MC_{high} = \text{MR}_{\text{no-match}}(\bar{p}) \).

Conjectural Variations. If \(p(Y) = p(y_1 + y_{-1}) \), then firm 1’s FOC is \(c'(y_1) = p(Y) + y_1p'(Y)[1 + \nu] \). The conjectural variation \(\nu = \frac{dy_1}{dy_{-1}} \) is 0 for Cournot, -.5 for Stackelberg leader (in linear duopoly), -1.0 in Bertrand, and \(\nu = \frac{y_{-1}}{y_1} \) in collusion/Cartel.

Hotelling location models. Duopoly case on \([0, 1] \): Firm \(i \)’s BR to location choice \(z_j < .5 \) is \(z_i = z_j + \epsilon \), and to \(z_j > .5 \) is \(z_i = z_j - \epsilon \). Unique NE will be back to back at \(z = .5 \). Delivered Price for firm \(j \) at location \(z \) is \(p_j(z) = p + t|z - z_j| \).

Monopolistic Competition. Solve standard monopoly problem \(MR = MC \) and \(p = D^{-1}(q^*) \). Determine whether economic profits are \(> 0 \) or \(< 0 \). In LR equilibrium \(\pi = 0 \) since \(LRAC = LRAR \).

Equations for Intertemporal Equilibrium Theory

Slope of indifference curve \(\frac{\partial U}{\partial t} = MRS_{01} = 1 + MRTP \), where \(\partial U = \frac{\partial U}{\partial t} \) is the marginal utilities from the current and future consumptions, \(t = 0 \). And \(MRTP \), or the marginal rate of time preference, is defined as \(MRTP = \frac{\partial U}{\partial t} - 1 \).

Return on investment \(ROI = f(x) - x \). \(AROI = \frac{f(x)}{x} - 1 \). \(MROI = f'(x) - 1 \), or, in geometrical terms, slope of PPF= \(MR = 1 + MROI = f'(x) \).

Slope of budget line \(-\text{slope} = \frac{\partial P}{\partial x} = 1 + r \) where \(r \) is the real interest rate.

Wealth and present value. Given \(r > 0 \) and consumption stream \(C = (c_0, c_1) \), the present value of \(C \) is the horizontal axis intercept \(w \) of the budget line thru \(C \): \(w = PV_r(C) = c_0 + \frac{c_1}{1+rt} \), where \(w \) is called wealth in the intertemporal context.

Optimum investment. Given production function \(f \), endowment \(E = (e_0, e_1) \) and \(r \), the choice problem is \(\max_w w = PV_r(q) = q_0 + \frac{q_1}{1+rt} = e_0 - x + \frac{c_1 + f(x)}{1+rt} \). FOC gives \(r = MROI \).

Optimal individual borrowing, lending, and consumption. Given production stream \(Q \), utility \(U(c_0, c_1) \) and \(r \), max\(b(U(q_0 + b, q_1) - (1 + r)b) \) where \(b = c_0 - q_0 \) is the amount borrow. FOC gives \(r = MRTP \).

Fisher's equation \(k = r + \pi \).