Fisherman Theory: Notes

Refs:
- FM, Ch 17 (Fallegri & Molynex)

These notes will begin with the two-date barter model, and later extend it to several dates and monetary exchange.

The Basic Model

2 dates: 0 (now), 1 (later). No uncertainty.

1 good: C ("corn" or "consumption basket")

N agents, i = 1, ..., N, each with given preferences, represented by \(U(c_0, c_1) \), with classical properties (smooth, monotone, s.g.-concave).

\[
\begin{align*}
\text{MRS}_i &= \frac{\partial U}{\partial c_0} \\
\text{MU}_0 &= \frac{\partial U}{\partial c_0} \\
\text{MU}_1 &= \frac{\partial U}{\partial c_1}
\end{align*}
\]

- slope = \(\text{MRS}_i = 1 + \text{MRTP}_i \)

\[
\frac{\text{MRTP}_i}{\text{MU}_i} = \frac{\text{MU}_0}{\text{MU}_1} - 1
\]

The marginal rate of time preference (MRTP) summarizes the trade-off for i between present and future consumption:

on margin, i demands MRTP_i units extra future consumption per unit of foregone current consumption.

and
productive opportunities, represented by a production function

\[y = f(x) \]

relating increments to future consumption \(y = \Delta c_t \) to foregone current consumption \(x = -\Delta c_0 \).

Increments are taken relative to an endowment point \(E = (e_0, e_1) \).

so that \(f(0) = 0 \) and \(f' > 0 \). Also, assume \(f'' < 0 \).

\[\text{MRT} = 1 + \text{MROI} = f'(x). \]

Also, assume a frictionless financial market in which \(c_0 \) can be exchanged for claims on \(c_1 \) at date 0. Each unit of \(c_0 \) exchanges for \((1+r)\) units of \(c_1 \), so \(r \) is the (real) interest rate.

The exchange is called

\(C_0 \xrightarrow{(lending)} c_0 \xrightarrow{1+r} C_1 \)

\(C_1 \xrightarrow{(borrowing)} C_0 \xrightarrow{\text{lending}} (c_0) \)

\(\frac{C_1}{1+r} \)
Analysis of Model.

(i) Wealth and present value. For $C = (c_0, c_1)$ and r given, define $PV(C)$ to be the c_0-intercept of the budget line through C. It is the wealth, or present value, of the bundle C. Since 1 unit of c_0 exchanges for $(1+r)$ units of c_1, the agent can get $c_1 / (1+r)$ units of c_0. Hence

$$w = PV(C) = c_0 + \frac{c_1}{1+r}.$$

II. Individual optimizes given r and own characteristics $(E$ and $f_i)$.

(ii) Optimal investment. Given productive opportunities, preferences (U_i), and the market interest rate r, the agent wishes to maximize wealth, because this provides the greatest consumption opportunities.

Formally:

$$\max_x \quad w = PV(Q) = q_0 + \frac{q_1}{1+r} = e_0 - x + \frac{e_1 + f(x)}{1+r}.$$

The FOC is $0 = \frac{dw}{dx} = -1 + \frac{f'(x)}{1+r} \implies 1+r = f'(x) = 1+MROI \implies [r = MROI] \text{ at optimal investment level } x \text{ (interior solution)}$.

Rule: Invest to max PV:

m, Q : MROI = \(r\),

PV increases \max_{i} when $MROI > r$ (decreases) $(<)$

NB: Fisher Separation Theorem:

Optimal Q is independent of preference U_i:

Everyone expects MROI to r = social efficiency joint ownership.
(2) Optimal Consumption / Borrowing / Lending. The agent, having moved her budget line out as far as possible by choosing \(Q \) optimally, now wishes to find most preferred point \(C \) on budget line. Since a bundle can be exchanged in the financial market for any other bundle with the same present value, we have:

\[
\text{Max} \, U(c_o, q_i) \, \text{s.t.} \, \text{PV}(C) = \text{PV}(Q) = y, \quad \text{where} \quad C = Q + B,
\]

where \(B = (b, -(1+r)b) \) is the borrowing - repayment vector.

This can be rewritten as

\[
\text{Max} \, U(b_0 + b, q_i - (1+r)b). \quad \text{The FOC is}
\]

\[
O = (MU_0)(1) + (MU_1)(-1) \Rightarrow 1 + r = \frac{MU_0}{MU_1} = \text{MRS} = 1 + \text{MRTP}
\]

\[
\Rightarrow r = \text{MRTP} \, \text{at optimal interior consumption C (or borrowing b)}.
\]

\[\text{Rule: Increase borrowing when } r < \text{MRTP, decrease.}\]

1. **NB:** At optimum, every agent \(i \) has MRTP equal to \(r \), after sufficient borrowing or lending. (TECHNICALITY: impose Imada cond + classical approach to avoid corner solution - very unrealistic here.)

2. **Fisher Separation Theorem:** choice of \(Q \) is market - independent of prebs. \(\Rightarrow \) joint overprice.
(3) Equilibrium real (riskless) interest rate.

Each agent i equates MRTP and MROI to r, which involves some borrowing ($b_i > 0$) or lending $b_i = -l_i > 0$. An increase in r will decrease b_i (or increase l_i) via the production effect ($f'' < 0$) and the usual substitution effect (U concave). If b_i, l_i, c_0 and c_1 are both normal goods, the income effect will also decrease b_i if $b_i > 0$ but will decrease l_i if $l_i > 0$. The net effect is presumably as drawn (with l_i possibly backward-bending at very high r).

Aggregate borrowing is $B(r) = \sum_{i:b_i > 0} b_i(r)$ and aggregate lending is $L(r) = \sum_{i:l_i > 0} l_i(r)$. Under present presumptions, there is a unique r^* such that $B(r^*) = L(r^*)$. This is the equilibrium real interest rate, or (as we will later call it) the riskless rate.

(4) Comparative statics: r^* is increased by increased productive opportunities (MROI ↑) and by increased impatience (MRTP ↑).

See exercises, use autarky model ←