Peak Load Pricing

Market segmentation
2° P. discrm +

with a twist: capacity constraints
or at least MC that prices is much higher at peak demand.

seats in station electricity demand
"Not Undersold" policy = NUP

"We'll match any advertised price"

Good deal for consumers?

Aero laptop sold by 2 firms:
 Circus Sellers: \(MC = 800 \)
 Freds: \(P_C = P_F = 900 \)

\(Q_C = Q_F = 1000 \). \(P_{SC} = 1000 \cdot (900 - 800) = 100000 \)

Scenario 1

Suppose Fred cuts price to $860, doubles \(Q_F \).

\(P_{SF} \uparrow \$120 \). A real temptation!

eventually CS also cuts price,.....

"Bertrand hell"

Scenario 2 NUP. (Both firms)

A price cut to $860 now will not double \(Q_F \) ! It's not a tempting proposition.

So both firms keep prices high & equal.

\(\Rightarrow \) KDC model (sweezy)

"Sticky" prices etc.

NUP dulls price competition.
Transfer Price

The internal price at which upstream division sells to downstream division.

- For multinationals, use it to reduce taxes
- Incentives for managers

Double marginalization problem

Historical example:

- China \rightarrow Afghanistan \rightarrow Italy
- Silk \rightarrow Gold

Simple contemporary example:

Demand for final product

\[P = 10 - 2Q \]
\[MC_{Total} = 2 \text{, all upstream.} \]
\[MC_U + MC_D = 2 \]
\[M R = 10 - 4Q, \quad MC = 2 \]
\[4Q = 10 - 2 = 8 \]
\[Q = 2 \]
\[P = 10 - 2 \cdot 2 = 6 \]

\[\pi = (P - MC)Q = 4 \cdot 2 = 8 \]
Upstream firm maximizes own profit: it will price at 6 and hopes to sell 2 units.

But if downstream firm takes this price as its own MC and max's profit:

\[\text{max } \pi_D = (p_D - 6)Q = (10 - 2Q - 6)Q = (4 - 2Q)Q. \]

For C: \[0 = 4 - 4Q \Rightarrow Q = 1 \]

\[\Rightarrow p = 10 - 2 \cdot 1 = 8 \]

They get $2 in profit.

\[\pi = 8 \text{ no d.m. problem.} \]

\[\text{CS} = 4. \]
In general, when \(MC_T = MC_U + MC_D \), then firm as a whole sets

\[MR = MC_T = MC_U + MC_D \]

So motivate upstream firm by setting

\[NMR = MR - MC_D = MC_U = P_{\text{transfer}} \]

\(\rightarrow \) transfer price.
Basics of Risky Choice.

$$X_i$$	$$P_i$$
$1000 | 0.10
$100 | 0.40
0 | 0.50

$$E(X) = \mu = (1000)(1.1) + (100)(.4) + 0(.5) = \$140$$

$$Var = \sigma^2 = (1000-140)^2(.1) + (100-140)^2(.4) + (0-140)^2(.5) = \$84,400$$

$$\sigma = \sqrt{\sigma^2} = \$290.$$ Standard deviation.

$$(x_i, p_i), i = 1,..., n \quad \sum p i = 1, p_i \geq 0.$$

$$E(X) = \mu_x = \sum_{i=1}^{n} x_i p_i, \quad \sigma_x^2 = \sum_{i=1}^{n} (x_i-\mu)^2 p_i = Var X.$$

$$\sigma_x = \sqrt{\sigma_x^2}.$$

$$X_1 = \$10, X_2 = \$0 \quad \mu_x = \$5$$

$$P_1 = .5, P_2 = .5 \quad \sigma_x = \$5$$

$$CE =$$ valuation of the gamble

$$\geq \$5$$ for about $$\frac{1}{4}$$ of class

$$\geq \$$ for about $$\frac{1}{2}$$ of class. $$\geq 3$$ for most.

$$RP = \mu - CE. > 0$$ if risk averse.
Utility function

\[u_j(x) = CE_j = \mu_x - RP_j = \mu_x - \frac{1}{2} \sigma^2_j \]

\[CE_j = \mu_x - \frac{1}{2} \sigma^2_j \]

e.g. if \(RP_j = 4 \) and \(CE_j = 2 \),

then risk tolerance \(\sigma_j \) satisfies

\[4 = 5 - \sigma_j^2 \]

\[5 - 4 = 1 = \sigma_j^2 \]

\[\sigma_j^2 = \frac{1}{2} \]

\[\Rightarrow \sigma_j = \frac{1}{\sqrt{2}} = 0.04 \]

If \(CE_j = 3 \),

then

\[3 = 5 - \sigma_j \cdot 25 \]

\[\Rightarrow \sigma_j \cdot 25 = 5 - 3 = 2 \]

\[\Rightarrow \sigma_j = \frac{2}{25} = \frac{0.08}{25} \]

Discussion