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This activated scaling behavior is consistent
with our observation of rapidly diverging expo-
nent zv in the vicinity of the field-induced QCP
with quenched disorder. To test this paradigm,
we turn to the specific analysis of SMT. Accord-
ing to the pair-breaking scenario of SMT, bo-
sonic cooper pairs can be overdamped into normal
single-particle excitations, which results in the
quantum SMT at 7' = 0 with the clean critical
exponent v = % (34). Thus, in the 2D system
with SMT, the violation of the Harris criterion
(with dv = 1) will most likely lead to the infinite-
randomness QCP. Indeed, previous theoretical
investigations revealed that the quenched dis-
order markedly changes the scaling behavior of
SMT and results in activated scaling identical to
the RTFIM (44-47). On this basis, we can fit the
experimental resu*lts of zv by the activated scaling
law 2v ~ C|B — B, | ¥ with constant C and the 2D
infinite-randomness critical exponents v ~ 1.2 and
v = 05 (8 9), and the good agreement between our
observation and the theoretical expectation strong-
ly supports the existence of infinite-randomness
QCP (Fig. 3).

Our findings are summarized by the schematic
phase diagram in Fig. 4. When approaching the
infinite-randomness QCP at Bc*, the quenched
disorder leads to two correlated phenomena: (i)
In the zero-temperature limit, the vortex lattice
deforms into a vortex glass-like phase on a length
scale L > Lp; (ii) because of the transformation
into the vortex glass-like phase, rare regions of
inhomogeneous superconducting islands grad-
ually emerge in the B > B, regime and manifest
activated scaling behavior, namely, the quantum
Griffiths singularity (Fig. 3). One question remains
as to why this activated scaling feature has not yet
been observed in SMT in previous studies. We at-
tribute this absence to the instability of the vortex
glass-like phase under thermal fluctuation. The
quenched disorder will play a dominant role for
length scales L > Lp. Thus, in the high-temperature
regime, thermal fluctuations smear the in-
homogeneity caused by quenched disorder, and
rare regions hardly exist. Near zero temperature,
the impact of quenched disorder overtakes ther-
mal fluctuation, which results in the emergence
of rare regions around the infinite-randomness
QCP (Fig. 4). On the basis of these considerations,
we speculate that the activated scaling feature
can only be observed under extremely low tem-
perature, which is the case in our study.

REFERENCES AND NOTES

B. M. McCoy, T. T. Wu, Phys. Rev. 176, 631-643 (1968).

R. B. Griffiths, Phys. Rev. Lett. 23, 17-19 (1969).

A. B. Harris, J. Phys. C Solid State Phys. 7, 1671-1692 (1974).

D. S. Fisher, Phys. Rev. Lett. 69, 534-537 (1992).

D. S. Fisher, Phys. Rev. B 51, 6411-6461 (1995).

C. Pich, A. P. Young, H. Rieger, N. Kawashima, Phys. Rev. Lett.

81, 5916-5919 (1998).

7. 0. Motrunich, S. C. Mau, D. A. Huse, D. S. Fisher, Phys. Rev. B
61, 1160-1172 (2000).

8. T. Vojta, A. Farquhar, J. Mast, Phys. Rev. £ 79, 011111 (2009).

9. . A Kovacs, F. Igldi, Phys. Rev. B 82, 054437 (2010).

10. M. C. de Andrade et al., Phys. Rev. Lett. 81, 5620-5623 (1998).

11. A. H. Castro Neto, G. Castilla, B. A. Jones, Phys. Rev. Lett. 81,
3531-3534 (1998).

12. S. Ubaid-Kassis, T. Vojta, A. Schroeder, Phys. Rev. Lett. 104,

066402 (2010).

SoawN e

SCIENCE sciencemag.org

13. D. B. Haviland, Y. Liu, A. M. Goldman, Phys. Rev. Lett. 62,
2180-2183 (1989).

14. A. F. Hebard, M. A. Paalanen, Phys. Rev. Lett. 65, 927-930
(1990).

15. A. Yazdani, A. Kapitulnik, Phys. Rev. Lett. 74, 3037-3040
(1995).

16. A. M. Goldman, Int. J. Mod. Phys. B 24, 4081-4101 (2010).

17. N. Markovi¢, C. Christiansen, A. M. Goldman, Phys. Rev. Lett.
81, 5217-5220 (1998).

18. M. P. A. Fisher, P. B. Weichman, G. Grinstein, D. S. Fisher, Phys.
Rev. B 40, 546-570 (1989).

19. J. Biscaras et al., Nat. Mater. 12, 542-548 (2013).

20. X. Shi, P. V. Lin, T. Sasagawa, V. Dobrosavljevi¢, D. Popovi¢,
Nat. Phys. 10, 437-443 (2014).

21. See supplementary materials on Science Online.

22. T. Nishio, M. Ono, T. Eguchi, H. Sakata, Y. Hasegawa, Appl.
Phys. Lett. 88, 113115 (2006).

23. R. C. Dynes, V. Narayanamurti, J. P. Garno, Phys. Rev. Lett. 41,
1509-1512 (1978).

24. N. Reyren et al., Science 317, 1196-1199 (2007).

25. N. R. Werthamer, E. Helfand, P. C. Hohenberg, Phys. Rev. 147,
295-302 (1966).

26. A. T. Bollinger et al., Nature 472, 458-460 (2011).

27. S. L. Sondhi, S. M. Girvin, J. P. Carini, D. Shahar, Rev. Mod.
Phys. 69, 315-333 (1997).

28. S. Sachdev, Quantum Phase Transtions (Cambridge Univ.
Press, Cambridge, ed. 2, 2011).

29. M. P. A. Fisher, Phys. Rev. Lett. 65, 923-926 (1990).

30. M. V. Feigel'man, A. I. Larkin, Chem. Phys. 235, 107-114

(1998).

M. V. Feigel'man, A. I. Larkin, M. A. Skvortsov, Phys. Rev. Lett.

86, 1869-1872 (2001).

B. Spivak, A. Zyuzin, M. Hruska, Phys. Rev. B 64, 132502

(2001).

. A. Kapitulnik, N. Mason, S. A. Kivelson, S. Chakravarty, Phys.

Rev. B 63, 125322 (2001).

34. S. Sachdev, P. Werner, M. Troyer, Phys. Rev. Lett. 92, 237003

(2004).

o1

3L

=

3

>

3

@

35. B. Spivak, P. Oreto, S. A. Kivelson, Phys. Rev. B 77, 214523
(2008).

36. D. S. Fisher, M. P. A. Fisher, D. A. Huse, Phys. Rev. B 43,
130-159 (1991).

37. G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin,
V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

38. B. Rosenstein, D. Li, Rev. Mod. Phys. 82, 109-168 (2010).

39. A. A. Abrikosov, L. P. Gor'kov, Sov. Phys. JETP 12, 1243-1253
(1961).

40. K. Maki, Prog. Theor. Phys. 40, 193-200 (1968).

41. V. M. Galitski, A. . Larkin, Phys. Rev. Lett. 87, 087001
(2001).

42. T. Vojta, J. Phys. A 39, R143-R205 (2006).

43, T. Vojta, J. A. Hoyos, Phys. Rev. Lett. 112, 075702 (2014).

44. J. A. Hoyos, C. Kotabage, T. Vojta, Phys. Rev. Lett. 99, 230601
(2007).

45. T. Vojta, C. Kotabage, J. A. Hoyos, Phys. Rev. B 79, 024401
(2009).

46. A. Del Maestro, B. Rosenow, M. Milller, S. Sachdev, Phys. Rev.
Lett. 101, 035701 (2008).

47. A. Del Maestro, B. Rosenow, J. A. Hoyos, T. Vojta, Phys. Rev.
Lett. 105, 145702 (2010).

ACKNOWLEDGMENTS

Supported by National Basic Research Program of China grants
2013CB934600, 2012CB921300, and 2015CB921102; National
Natural Science Foundation of China grants 11222434, 11174007,
and 11534001; and the Research Fund for the Doctoral Program of
Higher Education (RFDP) of China.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/350/6260/542/suppl/DC1
Materials and Methods

Figs. S1to S8

References (48, 49)

17 January 2015; accepted 21 September 2015
Published online 15 October 2015
10.1126/science.aaa7154
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Peer effects on worker output in the
laboratory generalize to the field

Daniel Herbst' and Alexandre Mas™?3*

We compare estimates of peer effects on worker output in laboratory experiments and
field studies from naturally occurring environments. The mean study-level estimate of a
change in a worker’s productivity in response to an increase in a co-worker’s productivity
(y) is ¥ = 0.12 (SE = 0.03, ngtugies = 34), with a between-study standard deviation

t = 0.16. The mean estimated y-values are close between laboratory and field studies
(Yiab = Yfield = 0.04, P = 0.55, nyyp = 11, ngieq = 23), as are estimates of between-study
variance ° (3, — %ﬁe,d = -0.003, P = 0.89). The small mean difference between laboratory
and field estimates holds even after controlling for sample characteristics such as
incentive schemes and work complexity (¥jap = ¥fielq = 0.03, P = 0.62, Nsampies = 46).
Laboratory experiments generalize quantitatively in that they provide an accurate
description of the mean and variance of productivity spillovers.

aboratory experiments in the social scien-
ces are valuable for understanding human
behavior in controlled environments (Z, 2).
However, there is an active debate about
the extent to which these experiments have
external validity. In an influential paper, Levitt
and List have questioned whether findings in
laboratory studies generalize in the real world,
arguing that “because the lab systematically dif-
fers from most naturally occurring environments...

experiments may not always yield results that
are readily generalizable” (3). Indeed, on the sur-
face, laboratory experiments appear quite differ-
ent than natural settings. Subjects tend to be
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students, and the controlled setting may appear
artificial in relation to actual workplaces. In spite
of the importance of laboratory studies in the
social sciences, and of the many articles engaging
in this debate (4-7), to our knowledge there has
not been a systematic comparison of the same
economic parameter estimated in laboratory ex-
periments and field studies using more than a
small number of studies.

We exploited the relative abundance of esti-
mates for one particular parameter—the estimated
spillover effect of worker productivity on the
productivity of co-workers—in order to compare
estimates from laboratory experiments with those
from field studies that use data from naturally
occurring environments. This parameter, which
we denote v, is useful for understanding a variety
of economic phenomena, including wage setting,
economic growth, the social returns to human
capital investment, the effects of immigration,
the optimal assignment of workers to teams, and
agency problems. Over the past 15 years, there have
been more than 34 studies seeking to estimate y in
a diverse set of occupations (8—41), including fruit
pickers (I1), supermarket cashiers (31), physicians
(17), sales teams (I18), and scientists (4¢0). The large
number of estimates of y in the literature presents
an opportunity to directly compare the findings of
laboratory experiments and field studies.

We constructed a database of y estimates using
inclusive criteria (42). We included a study in the
database if the paper contains an estimate of the
effect of the productivity of a worker or a group
of workers on another worker or group of work-
ers, and the paper interprets the estimate as a
workplace-productivity peer effect. We included
laboratory experiments meant to simulate work-
place environments. Estimates from both published
and working papers were included to mitigate
possible publication bias. This yielded papers in
traditional field settings with observable productiv-
ity data but also included sports studies (25, 26, 41)
and studies estimating spillovers by using admin-
istrative earnings data (12, 19, 35). Several studies
that estimate worker peer effects (43-46) do not
include all of the information required to con-
struct comparable, variance-weighted estimates
and were therefore not included. After this screen,
our database contains estimates from 34 papers,
of which 23 are field studies and 11 are laboratory
experiments (table S1). We call this the study-
level database. In this database, 50% of the studies
are published (Table 1).

Studies often include several estimates from
different methodologies, specifications, and/or
samples. If multiple methodologies were used,
we selected estimates using the methodology
the authors explicitly stated as preferred. If the
authors did not explicitly state their preferred
methodology, we selected estimates according
to the following ranking: randomized controlled
trial, regression discontinuity design, instrumental
variables, difference-in-differences, and ordinary
least squares. For a given methodology, in cases
in which there was more than one specification
and the study did not clearly state the preferred
estimate, we used the specification with the most
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controls. Last, if estimates were given for mul-
tiple independent samples, we computed a single
observation-weighted average of the sample esti-
mates and combined standard errors (42). Esti-
mates were coded by the authors according to
this protocol and independently verified by a sec-
ond coder. Details on how estimates were coded
are available in the supplementary materials (42).

Because some papers report estimates from
different samples, we assembled a second database
in which we extracted multiple estimates from a
study when the estimates are from distinct sam-
ples. This database, which we denote the sample-
level database, contains 46 estimates from the 34
studies. For each sample, we coded whether the
job required abstract reasoning, the incentive
structure of the job (fixed wages, individual piece
rates, or team-based compensation), whether
workers were substitutes or complements in the
production process, and whether workers com-
peted over scarce inputs to worker-level produc-
tion. This sample-level database complements the
study-level data set by allowing us to examine
how worker spillover estimates vary by study
characteristic because papers sometimes report
estimates for different workplace conditions. Within
the sample-level database, in 48% of samples,
workers had fixed wages with no individual piece
rate compensation; in 48% of samples, workers
were paid with individual piece rates; and in 20%
of samples, there was team-based compensation.

In 24% of samples, the task or occupation re-
quired abstract reasoning (Table 1).

Twenty-two studies in our study-level database
relate a worker’s productivity to the productivity
of a co-worker or group of co-workers (a levels-
levels specification). Because the dependent and
independent variables of interest are in the same
units, the estimated coefficient is a unitless mea-
sure that can be interpreted as an elasticity or a
standardized coefficient. In seven studies, the
dependent and independent variables are in
natural log units. As long as mean productivity is
similar between focal and peer workers, means
of the dependent and independent variables are
close, and the estimated coefficients have a sim-
ilar interpretation as the levels-levels specifica-
tion [this follows from din(y)/din(x) = (dy/dx)
(@/v)]. Excluding estimates from log specifica-
tions in our data set yields similar pooled esti-
mates of ¥ as the main sample (table S2). In five
studies, the dependent and independent produc-
tivity measures are in different units, in which
case we standardized both variables with respect
to the individual-level productivity distribution.
Because of the presence of these five studies, the
most precise interpretation of the mean of ¥;
across studies (denoted ) is a standardized co-
efficient giving the standard deviation change in
worker productivity from a 1 SD change (in the
individual-level productivity distribution) of co-
worker productivity. However, ¥ also has an

Table 1. Summary statistics. Shown are unweighted summary statistics for study-level and sample-
level databases. Peer-effects estimates are denoted by y. “P value” corresponds to the P value of the
estimated y; in the study. “Sample size" gives mean and standard deviation of sample sizes across papers.
“Lab experiment” is a dummy variables for whether a study was classified as a laboratory experiment.
“Published” indicates whether a study was published in a peer-reviewed journal. “Fixed wage" is a dummy
variable for whether compensation had a flat or hourly pay component with no individual piece rate.
“Individual piece rate” and “Group piece rate” are dummy variables for whether a portion of compensation
was determined by individual or group output, respectively. “Complement” is a dummy for whether
authors made specific reference to complementarities between workers in their joint production function.
“Perfect substitute” is a dummy for whether workers in the sample being studied generated perfectly
substitutable output in the production process. “Complex job” is a dummy for whether the job or task
performed required abstract reasoning. “Rival” is a dummy for whether workers in the sample competed
in the production process. “Observations” reports total number of estimates in the study-level and
sample-level data sets, respectively. Dashes indicate that the variable was not coded in the database.

Study Sample

Variable

Mean SD Mean SD
Y 0.134 0.203 0.140 0.216
P value 0.138 0.232 0.146 0.257
Sample size 468,375 2,207142 155,511 344,550
Lab experiment 0.324 0.475 0.326 0.474
Published 0.500 0.508 0.543 0.504
Fixed wage = = 0.478 0.505
Individual piece rate — — 0.478 0.505
Group piece rate — — 0.196 0.401
Complement — — 0.022 0.147
Perfect substitute — — 0.565 0.501
Complex job = = 0.239 0431
Rival = = 0.087 0.285
Observations 34 46
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approximate elasticity interpretation: A 1% increase
in average co-worker productivity increases focal
worker productivity by y percent. Excluding the
studies with standardized variables and keeping
estimates that have a pure elasticity interpreta-
tion yields an almost identical average estimate
of ¥, as does converting the standardized mea-
sures into elasticities when possible and comput-
ing ¥ over all studies with a natural elasticity
interpretation (table S2).

The average unweighted estimate of y is 0.13
(SD = 0.20) (Table 1). In the study-level database,
56% of estimates are positive and statistically

Study Type and Authors

Lab Experiments

significant at the 5% level, 2.9% of studies are
negative and significant at the 5% level, and the
remaining studies are insignificant at the 5%
level (Fig. 1).

To aggregate estimates into a comprehensive
summary measure, taking into account the sam-
pling error of the estimates, we estimated a
random-effects model that assumes that estimates
are drawn from sampling distributions with pos-
sibly distinct means. The random-effects model
assumes that each study’s observed peer effects
estimate is composed of three elements: the mean

effect size vy, a study’s divergence from the mean

Effect (95% Cl)

effect \;, and an error term €; around that study’s
estimate. For study 7, the observed peer effect
estimate 7; is given by

Yi=v+h+e
To estimate the summary effect v, study-level
estimates are weighted by inverse variance
weights
. 1
N SE? + 12

i

where is SE? is the squared standard error of es-
timate 7 and 7> is the estimated between-study

% Fig. 1. All study-level

Weight  estimates, summary
effects by study type,
and the overall summary

Veldhuizen, Oosterbeek, and S —_—— -0.06 (-0.22,0.11) 2.96 : )

eldnuizen, Dosterbeek, and sonnemans | ( ) effect. Solid black diamonds
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Field Studies
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Widths of blue diamonds
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Chan, Li, and Pierce —— -0.11 (-0.46, 0.23) 1.67 the inverse-variance
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1
Steinbach + 0.15 (-0.00,0.29)  3.11
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|
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|
|
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Table 2. Summary estimates by paper type. Shown are the random-effects summary estimate of y
across laboratory and field studies. Standard errors are in parentheses. Observations are inverse
variance—weighted, where variance is computed as the reciprocal sum of each study's sample variance
and the between-study variance: W; = (o + )71 Standard error of the summary estimate is computed
as the square root of the reciprocal sum of Wi;. Final column reports P values for a comparison of means z
test for equality in summary effect and ® terms between laboratory and field studies. P value for 2
difference was computed using bootstrapped standard errors.

Overall Laboratory Field P value
Summary effect 0.120 0.148 0.107 0.545
(0.031) (0.055) (0.038)
7 0.025 0.023 0.026 0.890
Observations 34 1 23

Table 3. Laboratory-field comparisons controlling for sample characteristics. Shown are meta-
regression coefficients for the sample-level data set with standard errors in parentheses. *P < 0.10, **P <
0.05, ***P < 0.01. Dependent variable is study’s reported worker peer effect estimate y; for sample i.
“Laboratory experiment” is an indicator for whether or not an estimate was taken from a laboratory study.
“Group piece rate” is a dummy variables for whether a portion of compensation was determined by group
output. “Fixed wage” is a dummy variable for whether compensation had a flat or hourly pay component
with no individual piece rate. “Published” indicates whether a study was published in a peer-reviewed
journal. “Complex job” is a dummy for whether the job or task performed required abstract reasoning.
“Perfect substitute” is a dummy for whether workers in the sample being studied generated perfectly
substitutable output in the production process. “Complement” is a dummy for whether authors made
specific reference to complementarities between workers in their joint production function. “Rival” is a
dummy for whether workers in the sample competed in the production process. “GPR*Lab,” “FW*Lab,"
and “PS*Lab" are interaction terms for “Laboratory experiment” with “Group piece rate,” “Fixed wage,"
and “Perfect substitute,” respectively. Estimates were obtained via variance-weighted least squares
regression, where weights and standard errors are consistent with a random-effects meta-analysis model:
Inverse-variance weights are computed as the reciprocal sum of each study's sample variance and the
between-study variance: W; = (c? + 2) .

(€)) ) 3) 4)
Laboratory experiment 0.052 0.016 0.029 -0.050
(0.059) (0.062) (0.059) (0.102)
Group piece rate 0.149** 0.162** 0.174*
(0.073) (0.070) (0.097)
Fixed wage 0.099* 0.046
(0.049) (0.059)
Published 0.054 0.044 0.026
(0.055) (0.053) (0.056)
Complex job -0.087 -0.085 -0.090
(0.067) (0.064) (0.065)
Perfect substitute -0.106* -0.108** -0.113*
(0.053) (0.050) (0.059)
Complement -0.135 -0.082 -0.122
(0.171) (0.164) (0.177)
Rival -0.188** —0.155* -0.182*
(0.089) (0.086) (0.092)
GPR*Lab 0.002
(0.146)
FW*Lab 0.181
(0.114)
PS*Lab -0.023
(0.130)
Constant 0.095*** 0.152%** 0.096* 0.143**
(0.032) (0.052) (0.056) (0.064)
Observations 46 46 46 46
548 30 OCTOBER 2015 « VOL 350 ISSUE 6260

variance of estimates. The between-study variance
is estimated with the empirical Bayes method
(47), which has been shown to be more accurate
than alternatives when the heterogeneity of
estimates is large (48). The standard error of y
is given by

SE(?) = ;

J=w

In the random-effects model, the majority of
papers receive comparable weight, with a small
handful of papers with imprecise estimates re-
ceiving little weight (Fig. 1). The average value of
¥, in the pooled sample is § = 0.12 (SE = 0.03, n =
34 studies) with an estimated between-study
variance 1> = 0.025 (Table 2). The I? statistic,
which describes the percentage of total variation
across studies that is due to heterogeneity rather
than chance (42), is almost 100% for the pooled
sample. The average value of ¥, for laboratory
and field samples respectively is 0.148 (SE = 0.055,
Map, = 11 studies) and 0.107 (SE = 0.038, ngeq = 23
studies). The random-effect average pooled esti-
mates for both the laboratory and field estimates
are statistically distinguishable from zero at con-
ventional levels. We cannot reject equality of
the means of y in the laboratory and field sam-
ples (P = 0.55). The between-study variances are
also similar in the laboratory and field samples:
The between-study variability of estimates, 12, is
estimated as 0.023 in the laboratory sample and
0.026 in the field sample, and we cannot reject
equality of these parameters using bootstrapped
standard errors (P = 0.89).

Studies differ in compensation schemes, pro-
duction processes, and task complexity. These fea-
tures of the studies may influence the extent of
peer effects. The small mean difference between
estimates in the laboratory and field samples is
stable after controlling for study and workplace
characteristics in a regression framework. We
used the sample-level data set to estimate the
following equation using a modified variance-
weighted least-squares regression:

?i = o; + Blab; + 8X; + €;

where lab; is an indicator for whether the esti-
mate was taken from a laboratory experiment, X;
is a vector of variables controlling for study and
workplace characteristics, €; is the error term,
and each observation is weighted by its inverse
variance W; (Table 3). Without controls, the es-
timated laboratory experiment indicator coeffi-
cient (fi) is similar in magnitude to the value
found in the study-level data set (fi =005 P =
0.38, n = 46 samples). The estimates attenuated
when we added workplace and paper character-
istics, including variables for worker compensa-
tion incentives (group piece-rate indicator and
fixed-wage indicator), publication status, an in-
dicator for whether the occupation requires ab-
stract reasoning, and an indicator for whether
workers in the study are rivals (B =0.029, P =
0.62, n = 46 samples).

The coefficients on the workplace charac-
teristics in the regression setting are worth
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additional discussion. As has been long noted in
the literature on organizations (49), workplaces
with team-based production and fixed wages are
susceptible to the free-rider problem because effort
is a public good when there is imperfect moni-
toring. Assuming workers only have self-interested
motives, introducing a more productive co-worker
in such a workplace will lead other workers to be
less productive because their colleague is taking
on a greater share of the workload. However, the
free-rider problem can be overcome with mutual
monitoring or the threat of social sanctions. In
this case, the presence of a more productive co-
worker might lead other workers to increase
their effort because of these considerations. The
coefficients on the group piece-rate and fixed-wage
coefficients are both positive and statistically sig-
nificant, suggesting that positive co-worker produc-
tivity spillovers are particularly important in these
settings. This finding is evidence that positive
co-worker peer effects, possibly because of the
threat of social sanctions, help mitigate the free-
rider problem. The negative and significant coef-
ficient on substitutes indicates that production
processes in which workers are perfect substi-
tutes have less pronounced peer-productivity spill-
overs. We tested whether these conclusions differ
between laboratory and field studies. Estimating
a model with interactions of the laboratory in-
dicator with indicators for group piece-rate, fixed
wages, and perfect substitutability (variables for
which there is sufficient overlap between labo-
ratory and field studies), we found coefficients
on interaction terms for group piece rate and
substitutability that are close to zero and insig-
nificant, whereas the coefficient on the fixed-wage
and laboratory interaction is positive but not sta-
tistically significant because of a large standard
error (Table 3, column 4). The estimates on the
interaction terms imply that laboratory and field
studies yield similar relationships between work-
place characteristics and the magnitude of peer
effects for two of the three characteristics we
examined (and inconclusive for the third), with
the caveat that these estimates are somewhat
imprecise.

We conclude that for estimation of y, labora-
tory studies generalize quantitatively. This is a
surprising finding because even proponents of
laboratory experiments have argued that labora-
tory experiments may only generalize qualitatively
(7), and it suggests that laboratory experiments
have more external validity than previously recog-
nized. One caveat is that there is between-study
dispersion reflecting unobserved heterogeneity
in worker peer effects estimates both for field
and laboratory studies, so that any individual
study differs from the mean of the summary y
estimate. However, we also found that between-
study standard deviations are comparable in the
laboratory and field samples, as are the predic-
tion intervals. Consequently, laboratory experi-
ments provide a representative depiction of the
overall distribution of y values.

An additional question is why estimation of
productivity spillovers translates well in the labo-
ratory. The findings suggest that it is possible to
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simulate realistic work environments in the labo-
ratory, particularly experiments with real-effort
tasks. However, there are aspects of real work-
places that are missing in even the most complex
laboratory studies. In laboratory studies, subjects
are usually aware that they are being observed,
and it is known that in a number of environ-
ments, there are effects of social facilitation on
performance that are mediated by whether the
task requires performance of learned skills or
learning new skills (50). It is also not possible to
simulate long-term employment relationships in
the laboratory, a feature of many real workplaces.
Our results indicate that these special features
of the laboratory, among others, may not be as
important for estimating productivity spillovers
as the ones that are modeled.
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